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Context: Who am 1?7

| am a biostatistician with an interest in modelling the
cost-effectiveness of prostate cancer testing/screening. | am not:

» An expert in machine learning
» A health economist
» A bona fide epidemiologist

» A bona fide mathematical modeller
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Context: Prostate cancer testing

» From a population health perspective, arguably, prostate
cancer testing using the prostate-specific antigen (PSA) test is
doing more harm than good and we could discourage its use

» From a health services perspective, prostate cancer testing has
led to ballooning costs

» From a clinical perspective, a clinician wants to help their
patient avoid metastatic prostate cancer

» From a health industry perspective, prostate cancer testing is
good business
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» From a population health perspective, arguably, prostate
cancer testing using the prostate-specific antigen (PSA) test is
doing more harm than good and we could discourage its use

» From a health services perspective, prostate cancer testing has
led to ballooning costs

» From a clinical perspective, a clinician wants to help their
patient avoid metastatic prostate cancer

» From a health industry perspective, prostate cancer testing is
good business

» Score: two for and two against
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Context: We need to screen better for cancer

» New biomarkers are required to screen better for cancer

» How do we evaluate whether a new biomarker is cost-effective
for cancer screening?

» Specifically, how can we evaluate whether a biomarker panel
(with five blood-based biomarkers, a genetic risk score from
150 SNPs and self-reported family history) can lead to
improved prostate cancer screening?

6/31



Conceptual overview

Established biomarker(s)

New biomarker Prediction Simulation &:ﬂ

Natural history



Conceptual overview

Established biomarker(s)

Cost

New biomarker ——— Prediction Simulation QALY

Natural history



Conceptual overview

Established biomarker(s)

Cost

New biomarker ——— Prediction ——— Simulation QALY

7

Natural history



Conceptual overview

Established biomarker(s)

Cost

New biomarker ——— Prediction ————> Simulation — QALY

7

Natural history



Conceptual overview

Established biomarker(s)

Cost

New biomarker ——— Prediction ————> Simulation — QALY

e —

Natural history

7/31



Prediction: Pepe (2003)

Tests for Classification
and Prediction
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Prediction using new biomarkers: PROBE designs

COMMENTARY |}

Pivotal Evaluation of the Accuracy of a Biomarker Used for
Classification or Prediction: Standards for Study Design
Margaret S. Pepe, Ziding Feng, Holly Janes, Patrick M. Bossuyt, John D. Potter

Research methods for biomarker evaluation lag behind those for ing itic a phased
to development of biomarkers exists and guidelines are available for reporting study results, a coherent and comprehensive set of
guidelines for study design has not been deli d. We di ibe a nested trol study design that involves prospective
! of speci before i from a study cohort that is relevant to the clinical application. The bio-
marker is assayed in a blinded fashion on specimens from randomly selected case patients and control subjects in the study cohort
We separately describe aspects of the design that relate to the clinical context, biomarker per criteria, the bi rker test,
and study size. The design can be applied to studies of biomarkers intended for use in disease di; i ing, or prognosi
Common biases that pervade the biomarker research literature would be eliminated if these rigorous standards were followed.

J Natl Cancer Inst 2008;100:1432-1438
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Prediction: Primer on test characteristics

“Most of epidemiology reduces to 2x2 tables”

Disease
status
_|,_ -
Test + | a b
status — | ¢ d

Sensitivity = Pr(Test + | Disease +) = -
a+c

d
Specificity = Pr(Test — | Di )= ——
pecificity r(Test — | Disease —) b d
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Continuous biomarkers: trade-off between Se and Sp

For a continuous biomarker, we can consider a threshold 7 with
sensitivity Se(7) = Pr(Biomarker>7|Disease +) and specificity
Sp(7) = Pr(Biomarker<|Disease -).

We can then look at the trade-off between sensitivity and specificity
using the receiver operator characteristic (ROC) curve defined by

(1= Sp(7), Se(7)).
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Prediction: Discrimination and calibration

» For discrimination, we are interested in whether a given
predictor is good at distinguishing between individuals with
and without the disease

» In the past, this has most often been measured using the area
under the curve (AUC) for the ROC curve.
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Prediction: Discrimination and calibration

» For discrimination, we are interested in whether a given
predictor is good at distinguishing between individuals with
and without the disease

» In the past, this has most often been measured using the area
under the curve (AUC) for the ROC curve.

» Other measures have recently received support (e.g. NRI)

» For calibration, we are interested in whether a given risk
prediction is unbiased: if the 10-year predicted risk of the
disease is x%, then is that similar to the risk observed in
out-of-sample data?
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Prediction: Technical issues for cancer screening

» Specificity of a cancer screening test must be high. We are
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Prediction: Technical issues for cancer screening

» Specificity of a cancer screening test must be high. We are
most interested in the LHS of the ROC curve (partial AUC)

» We can combine information on different predictors using
regression models, such as logistic regression and a range of
machine learning algorithms

» |If we over-fit our models, then we can get overly optimistic
AUCs. Use cross-validation, the bootstrap or external
validation

» Any new biomarker for should improve on the existing
biomarkers (e.g. PSA for prostate cancer, CA-125 for ovarian
cancer)

» However, new biomarkers are likely to be evaluated on men
who have been screened using the existing biomarkers
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Prediction: Interpretation of screen-positive designs

v

A screen-positive design is a study where the disease status is
only known for those that are positive for a screening test

This is a common design for cancer screening. For example, in
prostate cancer testing men are often referred to biopsy on the
basis of their PSA test value

The interpretation of the AUC and apparent
sensitivity /specificity becomes awkward as there is selection on
those who have the reference test (e.g. biopsy)

Remarkably, with these designs we can compare biomarkers
using the relative sensitivity and relative false positive fraction
(=1-specificity)
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Prediction: Assessment of genetic biomarkers for
cancer screening

» Sophisticated algorithms are available to determining which
SNPs are associated with an outcome (e.g. lasso, elastic net)

» However, it is common to use a genetic risk score based on the
sum of the number of risk alleles times the significant
univariate log odds ratios

» The bad news is that, after adjustment for existing biomarkers,
the genetic risk score often add little to the AUC:-(
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Simulation in cancer screening: Calculation of
cost-effectiveness

» For decision-making, health economists would like to compare
the average lifetime costs and lifetime utilities for different
screening scenarios

» Lifetime utilities are a generalisation of life-expectancy, where
an individual in full health has a current utility of one, a person
who has some disutility has a utility between zero and one,
and a person who has died has a utility of zero

» Health economists are very useful at calculating costs and
utilities — but they sometimes need help with modelling the
natural history for a disease

» The lifetime calculations of cost-effectiveness can be complex
if there is a complex natural history model
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Simulation: Taxonomy

There are several model classes that we can use to calculate
cost-effectiveness:

» Decision-tree analysis
» Loss of expected life calculations
» Markov models

» Microsimulation models

17/31



Simulation: Taxonomy

There are several model classes that we can use to calculate
cost-effectiveness:

» Decision-tree analysis
» Loss of expected life calculations
» Markov models
» Microsimulation models
These models can be further classified by:
» Discrete versus continuous time

» Deterministic versus stochastic models

17/31



Simulation: Taxonomy

There are several model classes that we can use to calculate
cost-effectiveness:

» Decision-tree analysis
» Loss of expected life calculations
» Markov models
» Microsimulation models
These models can be further classified by:
» Discrete versus continuous time

» Deterministic versus stochastic models

18/31



Simulation example: Prostate cancer testing

» We have extended an existing prostate cancer simulation
model, initially developed by colleagues at the Fred Hutchinson
Cancer Research Center (FHCRC)

» The simulations will be used to assess the cost-effectiveness of
(i) different testing/screening scenarios, (ii) informal and
formal compliance/costs and (iii) different types of tests

» Costs comes from the Swedish Institute for Health Economics

» Utilities come from a review from the Netherlands
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FHCRC natural history model

Age —> Cancer onset —> Metastasis

o >

PSA Clinical diagnosis
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FHCRC: cancer onset

The hazard for the onset of cancer follows:
ho(t) = 7ot

where t = age — 35 and 7, is a fixed parameter (5, = 0.0005). The
probability of no cancer onset is S, (t) = exp (—%t?).

0.012
|

0.008
|

Density

0.004

0.000
|

0 20 40 60 80 100

Age
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FHCRC: PSA

The longitudinal model for PSA is
log(PSA) = By + fit + Paft — to]+ + €

where [z]; = zI(x > 0) and ¢, is the time of cancer onset. The
parameters 3y, 51 and 32 are assumed to be random effects, and ¢
is measurement error.
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FHCRC PSA model

Population mean PSA values
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Borrowing from ovarian cancer screening: Can we use
repeated PSA values to predict the risk of prostate
cancer?

Screening Based on the Risk of Cancer Calculation
From Bayesian Hierarchical Changepoint and
Mixture Models of Longitudinal Markers

Steven J. SkaTes, Donna K. PAULER, and lan J. JacoBs

The standard approach to carly detection of discase with a quantitative marker is to set a population-based fixed reference level for
making further individual screening or referral decisions. For many types of disease, including prostate and ovarian cancer, additional
information is contained in the subject-specific temparal behaviar of the marker, which exhibits a characteristic alteration early in the
course of the discase. In this article we derive a Bayesian approach to screening hased on of the posteriar p of
disease given longitudinal marker levels. The method is motivated by a randomized ovarian cancer screening trial in the United Kingdom
comprising 22,000 women screened over 4 years with an additional 5 years of follow-up on average. Levels of the antigen CAI25
were recorded annually in the screened arm. CAI2S profiles of cases and controls from the U.K. trial are modeled using hierarchical
changepoint and mixture models, posterior distributions are calculated using Markov chain Monte Carlo methods, and the model is
used to calculate the Bayesian posteriar risk of having ovarian cancer given a new subject’s single or multiple longitudinal CA125
levels. A screening strategy based on the risk calculation is then evaluated using data from an independent screening trial of 5,550
women performed in Sweden. A longitudinal CAI25 screening strategy based on calculation of the risk of ovarian cancer is proposed.
Simulations of a prospective trial using a strategy based on the risk calculated from longitudinal CAI2S values indicate potentially large
reference level for all subjects.

increases in sensitivity for a given specificity compared to the standard approach based on a fixed CAI

KEY WORDS: Longitudinal CAL

Markov chain Monte Carlo: Mixtures: Ovarian cancer. Screening.
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Bayes' theorem for predicting prostate cancer

For a biomarker Y and disease outcome D,

Pr(D|Y =y) = Pr(Y = y|D)Pr(D) + Pr(Y = y|D)Pr(D)

Note that Pr(D) = Pr(¢ > t,) and, currently, Y is measured by
log(PSA).

This calculation could be extended to include a man's PSA test
history.
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Extending the natural history model to incorporate
multiple biomarkers

» PSA is a measure of time since cancer onset
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Extending the natural history model to incorporate
multiple biomarkers

» PSA is a measure of time since cancer onset

» SNPs are time-invariant, affecting either susceptibility or the
rate of onset (cf. time since onset)

» Different biomarkers will have varying functional relationships
— many of which may be poorly characterised

» As a simplification, we need only characterise the functional
relationship between cancer and the biomarker panel

» Complication: we usually have little or no information on
longer-term outcomes for the new biomarkers
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Implementation of the FHCRC simulation

» We have completed an open-source implementation of the
FHCRC model. The R package uses various C++ libraries and
scales well to multiple processors.

> See https://github.com/mclements/microsimulation/
tree/develop.
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https://github.com/mclements/microsimulation/tree/develop

Example: Simulations for prostate cancer incidence

under different testing/screening scenarios

Incidence rate
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Example: Cost-effectiveness under different

testing/screening scenarios, costs versus life-years
(discount=0%)
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Example: Cost-effectiveness under different

testing/screening scenarios, costs versus QALYs
(discount=0%)
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Returning to where we started: Can we test/screen
better for prostate cancer?

» The STHLM3 diagnostic trial uses a paired, screen-positive
design to assess whether a given biomarker panel has similar
sensitivity and greater specificity for advanced prostate cancers
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» The STHLM3 diagnostic trial uses a paired, screen-positive
design to assess whether a given biomarker panel has similar
sensitivity and greater specificity for advanced prostate cancers

» To calculate cost-effectiveness for formal testing/screening
using the biomarker panel, we will use the microsimulation
model. This evidence is intended to support Stockholm
County in deciding whether to introduce organised screening

» The genetic risk score is a significant, yet moderately small,
component of the biomarker panel for prostate cancer

» Given uncertainties in the longer-term outcomes, it is often
challenging to assess the cost-effectiveness of a novel genetic
marker on cancer screening
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