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Context: Who am I?

I am a biostatistician with an interest in modelling the
cost-effectiveness of prostate cancer testing/screening. I am not:

I An expert in machine learning

I A health economist

I A bona fide epidemiologist

I A bona fide mathematical modeller
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Covey’s Second Habit: “Begin with the end in mind”
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Context: Prostate cancer testing

I From a population health perspective, arguably, prostate
cancer testing using the prostate-specific antigen (PSA) test is
doing more harm than good and we could discourage its use

I From a health services perspective, prostate cancer testing has
led to ballooning costs

I From a clinical perspective, a clinician wants to help their
patient avoid metastatic prostate cancer

I From a health industry perspective, prostate cancer testing is
good business

I Score: two for and two against
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Context: We need to screen better for cancer

I New biomarkers are required to screen better for cancer

I How do we evaluate whether a new biomarker is cost-effective
for cancer screening?

I Specifically, how can we evaluate whether a biomarker panel
(with five blood-based biomarkers, a genetic risk score from
150 SNPs and self-reported family history) can lead to
improved prostate cancer screening?
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Conceptual overview

Established biomarker(s)

New biomarker Prediction Simulation Cost
QALY

Natural history
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Prediction: Pepe (2003)
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Prediction using new biomarkers: PROBE designs
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Prediction: Primer on test characteristics

“Most of epidemiology reduces to 2x2 tables”

Disease
status
+ –

Test + a b
status – c d

Sensitivity = Pr(Test + | Disease +) =
a

a+ c

Specificity = Pr(Test – | Disease –) =
d

b+ d

10 / 31



Continuous biomarkers: trade-off between Se and Sp
For a continuous biomarker, we can consider a threshold τ with
sensitivity Se(τ) = Pr(Biomarker>τ |Disease +) and specificity
Sp(τ) = Pr(Biomarker<τ |Disease –).

We can then look at the trade-off between sensitivity and specificity
using the receiver operator characteristic (ROC) curve defined by
(1− Sp(τ), Se(τ)).
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Prediction: Discrimination and calibration

I For discrimination, we are interested in whether a given
predictor is good at distinguishing between individuals with
and without the disease

I In the past, this has most often been measured using the area
under the curve (AUC) for the ROC curve.

I Other measures have recently received support (e.g. NRI)

I For calibration, we are interested in whether a given risk
prediction is unbiased: if the 10-year predicted risk of the
disease is x%, then is that similar to the risk observed in
out-of-sample data?
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Prediction: Technical issues for cancer screening

I Specificity of a cancer screening test must be high. We are
most interested in the LHS of the ROC curve (partial AUC)

I We can combine information on different predictors using
regression models, such as logistic regression and a range of
machine learning algorithms

I If we over-fit our models, then we can get overly optimistic
AUCs. Use cross-validation, the bootstrap or external
validation

I Any new biomarker for should improve on the existing
biomarkers (e.g. PSA for prostate cancer, CA-125 for ovarian
cancer)

I However, new biomarkers are likely to be evaluated on men
who have been screened using the existing biomarkers
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Prediction: Interpretation of screen-positive designs

I A screen-positive design is a study where the disease status is
only known for those that are positive for a screening test

I This is a common design for cancer screening. For example, in
prostate cancer testing men are often referred to biopsy on the
basis of their PSA test value

I The interpretation of the AUC and apparent
sensitivity/specificity becomes awkward as there is selection on
those who have the reference test (e.g. biopsy)

I Remarkably, with these designs we can compare biomarkers
using the relative sensitivity and relative false positive fraction
(=1–specificity)
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Prediction: Assessment of genetic biomarkers for
cancer screening

I Sophisticated algorithms are available to determining which
SNPs are associated with an outcome (e.g. lasso, elastic net)

I However, it is common to use a genetic risk score based on the
sum of the number of risk alleles times the significant
univariate log odds ratios

I The bad news is that, after adjustment for existing biomarkers,
the genetic risk score often add little to the AUC:-(
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Simulation in cancer screening: Calculation of
cost-effectiveness

I For decision-making, health economists would like to compare
the average lifetime costs and lifetime utilities for different
screening scenarios

I Lifetime utilities are a generalisation of life-expectancy, where
an individual in full health has a current utility of one, a person
who has some disutility has a utility between zero and one,
and a person who has died has a utility of zero

I Health economists are very useful at calculating costs and
utilities — but they sometimes need help with modelling the
natural history for a disease

I The lifetime calculations of cost-effectiveness can be complex
if there is a complex natural history model
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Simulation: Taxonomy

There are several model classes that we can use to calculate
cost-effectiveness:

I Decision-tree analysis

I Loss of expected life calculations

I Markov models

I Microsimulation models

These models can be further classified by:

I Discrete versus continuous time

I Deterministic versus stochastic models
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Simulation example: Prostate cancer testing

I We have extended an existing prostate cancer simulation
model, initially developed by colleagues at the Fred Hutchinson
Cancer Research Center (FHCRC)

I The simulations will be used to assess the cost-effectiveness of
(i) different testing/screening scenarios, (ii) informal and
formal compliance/costs and (iii) different types of tests

I Costs comes from the Swedish Institute for Health Economics

I Utilities come from a review from the Netherlands
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FHCRC natural history model

Age Cancer onset Metastasis

PSA Clinical diagnosis
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FHCRC: cancer onset
The hazard for the onset of cancer follows:

ho(t) = γot

where t = age− 35 and γo is a fixed parameter (γ̂o = 0.0005). The
probability of no cancer onset is So(t) = exp

(
−γo
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2
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FHCRC: PSA

The longitudinal model for PSA is

log(PSA) = β0 + β1t+ β2[t− to]+ + ε

where [x]+ = xI(x > 0) and to is the time of cancer onset. The
parameters β0, β1 and β2 are assumed to be random effects, and ε
is measurement error.
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FHCRC PSA model
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Borrowing from ovarian cancer screening: Can we use
repeated PSA values to predict the risk of prostate
cancer?
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Bayes’ theorem for predicting prostate cancer

For a biomarker Y and disease outcome D,

Pr(D|Y = y) =
Pr(Y = y|D)Pr(D)

Pr(Y = y|D)Pr(D) + Pr(Y = y|D̄)Pr(D̄)

Note that Pr(D) = Pr(t > to) and, currently, Y is measured by
log(PSA).

This calculation could be extended to include a man’s PSA test
history.
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Extending the natural history model to incorporate
multiple biomarkers

I PSA is a measure of time since cancer onset

I SNPs are time-invariant, affecting either susceptibility or the
rate of onset (cf. time since onset)

I Different biomarkers will have varying functional relationships
— many of which may be poorly characterised

I As a simplification, we need only characterise the functional
relationship between cancer and the biomarker panel

I Complication: we usually have little or no information on
longer-term outcomes for the new biomarkers
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Implementation of the FHCRC simulation

I We have completed an open-source implementation of the
FHCRC model. The R package uses various C++ libraries and
scales well to multiple processors.

I See https://github.com/mclements/microsimulation/
tree/develop.
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Example: Simulations for prostate cancer incidence
under different testing/screening scenarios
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Example: Cost-effectiveness under different
testing/screening scenarios, costs versus life-years
(discount=0%)
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Example: Cost-effectiveness under different
testing/screening scenarios, costs versus QALYs
(discount=0%)
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Returning to where we started: Can we test/screen
better for prostate cancer?

I The STHLM3 diagnostic trial uses a paired, screen-positive
design to assess whether a given biomarker panel has similar
sensitivity and greater specificity for advanced prostate cancers

I To calculate cost-effectiveness for formal testing/screening
using the biomarker panel, we will use the microsimulation
model. This evidence is intended to support Stockholm
County in deciding whether to introduce organised screening

I The genetic risk score is a significant, yet moderately small,
component of the biomarker panel for prostate cancer

I Given uncertainties in the longer-term outcomes, it is often
challenging to assess the cost-effectiveness of a novel genetic
marker on cancer screening
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